Electrical microstimulation has been used to elucidate cortical function. This review discusses neuronal excitability and effective current spread estimated by using three different methods: 1) single-cell recording, 2) behavioral methods, and 3) functional magnetic resonance imaging (fMRI). The excitability properties of the stimulated elements in neocortex obtained using these methods were found to be comparable. These properties suggested that microstimulation activates the most excitable elements in cortex, that is, by and large the fibers of the pyramidal cells. Effective current spread within neocortex was found to be greater when measured with fMRI compared with measures based on single-cell recording or behavioral methods. The spread of activity based on behavioral methods is in close agreement with the spread based on the direct activation of neurons (as opposed to those activated synaptically). We argue that the greater activation with imaging is attributed to transynaptic spread, which includes subthreshold activation of sites connected to the site of stimulation. The definition of effective current spread therefore depends on the neural event being measured.
Tolias AS, Sultan F, Augath M, Oeltermann A, Tehovnik EJ, Schiller PH, Logothetis NK. Tolias AS, et al. Neuron. 2005 Dec 22;48(6):901-11. doi: 10.1016/j.neuron.2005.11.034. Neuron. 2005. PMID: 16364895
Sultan F, Augath M, Logothetis N. Sultan F, et al. Magn Reson Imaging. 2007 Jul;25(6):754-9. doi: 10.1016/j.mri.2007.03.014. Epub 2007 May 4. Magn Reson Imaging. 2007. PMID: 17482409
Houweling AR, Brecht M. Houweling AR, et al. Nature. 2008 Jan 3;451(7174):65-8. doi: 10.1038/nature06447. Epub 2007 Dec 19. Nature. 2008. PMID: 18094684
Ilmberger J. Ilmberger J. Radiologe. 1995 Apr;35(4):237-41. Radiologe. 1995. PMID: 7597155 Review. German.
Tehovnik EJ, Slocum WM. Tehovnik EJ, et al. Neuroscience. 2013 Aug 15;245:12-25. doi: 10.1016/j.neuroscience.2013.04.022. Epub 2013 Apr 18. Neuroscience. 2013. PMID: 23603308 Review.
Tian F, Zhang Y, Schriver KE, Hu JM, Roe AW. Tian F, et al. Nat Commun. 2024 Aug 2;15(1):6528. doi: 10.1038/s41467-024-50375-0. Nat Commun. 2024. PMID: 39095351 Free PMC article.
Fine I, Boynton GM. Fine I, et al. Sci Rep. 2024 Jul 29;14(1):17400. doi: 10.1038/s41598-024-65337-1. Sci Rep. 2024. PMID: 39075065 Free PMC article.
Ersöz A, Kim I, Han M. Ersöz A, et al. Int IEEE EMBS Conf Neural Eng. 2023 Apr;2023:10.1109/ner52421.2023.10123832. doi: 10.1109/ner52421.2023.10123832. Epub 2023 May 19. Int IEEE EMBS Conf Neural Eng. 2023. PMID: 38590827 Free PMC article.
Suematsu N, Vazquez AL, Kozai TDY. Suematsu N, et al. J Neural Eng. 2024 Apr 9;21(2):026033. doi: 10.1088/1741-2552/ad3853. J Neural Eng. 2024. PMID: 38537268 Free PMC article.
van der Grinten M, de Ruyter van Steveninck J, Lozano A, Pijnacker L, Rueckauer B, Roelfsema P, van Gerven M, van Wezel R, Güçlü U, Güçlütürk Y. van der Grinten M, et al. Elife. 2024 Feb 22;13:e85812. doi: 10.7554/eLife.85812. Elife. 2024. PMID: 38386406 Free PMC article.